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Introdueton. The use of incompressible approximations in deriving solutions

to the Lighthili wave equation was investigated for problems where an analytical
solution could be found. A particular model problem involves the determination

of the sound field of a sphereical oscillating bubble in al_ ideal fl_ti<l. It i,_ found

that use of incompressible boundary conditions leads to good approximations
in the important region of high acoustic wave number.

Background. The Navier Stokes equations that govern the motion of New-

tonian fluids also govern the propagation of acoustic waves. In tailoring the

Navier Stokes equations for acoustic calculations, Lighthill was able to rewrite

the Navier Stokes forms of the momentum and mass conservation equations in

the form of wave equations with inhomogeneons right hand sides. This was an

exact result without any of the linearization that leads to lhe classical wave

equation. In particular, the equation for the pressure is

O:p c_V:p-- O_T'J
ot _ -- _.T,oxj "

(i)

The Lighthill stress tensor Tii on the righthand side is a fnnction of all the

unknown flow quantities. Technically, therefore, nothing has been accomplished
in garnering a solution; however, this shift of viewpoint has been enormously

productive in the theoretical investigation of jet noise [Lighthill]. Especially
important is the fact that the Lighthill equations are homogeneons in regions

away from turbulent flow.
The assumption of incompressibility leads to the equation

O_U, Uj
V_P : -Po----

Ox,Oxj

Here we capital P to denote the incompressible pressure and U the incompress-

ible velocity. As above, little p will denote compressible (exact) pressure.

The idea is to tlnd ev such that P+% well approximates the compressible so-

lution. Ideally p -'= P + (r, (the approximation is exact!) but this would happen
only with "difficult" properly juxtaposed boundary conditions and inhomogen-

ities corresponding to the exact Lighthill equation. For the model probIetu we

instead approximated these tetlns with compressible boundary conditions and
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inhomogenities leading to a problem where the right hand side T u of (1.1) is

known•

Pulsating bubble problem. We illustrate this procedure for the boundary

value problem resulting from a pulsating bubble in all ideal fluid. In this situ-

ation the Lighthill tensor Tit is zero and our concern will be with approximate

boundary conditions.

Consider a bubble of radius a pulsating with radial velocity fr{a(t), t). This

may be approximated with fixed velocity U(t) at r ::: a [Temken]. For brevity,

we ignore the mathematical statements of tile governing equations and all im-

portant boundary conditions and go right to tile solutions.

The compressible solution (normally hard) is

r

/9 a oo

The incompressible solution (normally easier) is

• a2 / a. 4

P = Po + poU-_, - _ po U2 --• F4"

The last term is negligible for small Much number.

The composite solution P + % with incompressible boundary conditions is

given with

,0:( :_p _ 0 t - :oiZ(t)--.
p c p

Inserting a Fourier mode U -- exp(ia_t) results in a comparison of iw with

-wka eikae_iw/co

1 -+ ika

The comparisons are very favorable for k ::---o.,/co large which indicates accuracy

for important high frequencies. Other methods of approximation reveal different

local similarities.

Continued Investigation, Other boundary value problems corresponding

to dipole and quadrupole sources are now receiving attention. This should de-

termine whether this methodology will be useful for form.latitlg stahl,_ problems

using incompressible information.
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